5G New Radio Specifications and System Design


Led by Dr Harri Holma and Dr Antti Toskala (Nokia), two of the world's leading experts in mobile networks, this course covers the new services and capabilities of 5G New Radio as well as LTE bridging technologies.

Our trainers promote 2-way interaction through the training and where possible, back up explanations with real-world examples. 

Our courses are developed with software and hardware developers in mind, but equally impart useful knowledge and experience for consultants and mobile operators. 


This course is available as a full 5-day course or the four sections can be taken independently. 

All delegates will receive a free copy of 5G Technology: 3GPP New Radio (Harri Holma, Antti Toskala, Takehiro Nakamura)

Programme details

Day 1 – 4G LTE-Advanced (Jonathan Moss)

With the explosion in mobile data traffic, mobile networks are needing to introduce a range of extensions to 4G radio technology to continue to provide a good user experience. 

This 1-day course explains the wide range of 4G features available within the LTE Advanced umbrella contained in 3GPP Releases 10-12. 

We cover the topics of Dual Connectivity and Inter-site Carrier Aggregation, Enhanced Coordinated Multipoint and evolutions of MIMO. 

We also explain the benefits of Small Cells, Relay Nodes and Heterogeneous Networks in making the most of the available radio spectrum. 


  • Carrier Aggregation (CA)
  • MIMO evolution
  • Heterogeneous Networks (HetNet)
  • Coordinated Mlitipoint (CoMP)
  • Enhanced CoMP over non-ideal backhali (eCoMP)
  • Dual connectivity (DC) and inter-site carrier aggregation
  • Self Organizing Networks (SON)
  • Relay nodes (RN)
  • Device-to-device communication (D2D)
  • LTE-Advanced optimization
  • LTE Performance: data rates, coverage, capacity and latency
  • CS Fallback and VoLTE optimization
  • LTE mobility and packet scheduler optimization

Day 2 – 5G New Radio, Part One (Dr Harri Homa and Dr Antti Toskala)

This course covers the bridging technologies between LTE and 5G based on 3GPP Releases 13 and beyond. 

We cover the concepts of LTE-Advanced Pro, often referred to as 4.5 or 4.9G and how 5G services can be enabled on top of LTE networks. 

The course includes the topics of Internet of Things optimization, Narrowband IoT and MulteFire in unlicensed bands. 

We also describe the use of WiFi as an aggregation layer, the provision of Public Safety services and low latency access. 


  • Explains LTE evolution steps in Releases 13 and beyond which enable 5G services on top of LTE network.
  • 5G networks
    • 5G schedule and targets
    • 3GPP standardization
    • 5G Technology Components
    • Network Architecture
    • Core network, cloud optimization and edge cloud
    • Network Slicing and QoS
    • Physical layer, waveforms and channel coding
    • Numerology and frame structure
    • Control channels
    • Radio Protocols
    • Spectrum
    • Latency
    • Spectral Efficiency
    • Network Energy Efficiency
    • 5G and LTE interworking
    • Multi-connectivity
    • 5G Devices
    • MIMO / Massive MIMO
    • 5G data rates
    • 5G trial specifications

Day 3 – 5G New Radio, Part Two (Dr Harri Homa and Dr Antti Toskala)

In this session we cover the rapidly developing 5G radio from the low layers to the network architecture and deployment aspects. 

We explain the 3GPP standardization process, the System Architecture and many of the enabling technologies including the use of mm spectrum, Massive MIMO, Network Slicing and QoS. 


  • IoT connectivity
    • NB-IoT and Cat-M
    • 3GPP standardization
    • Network architecture
    • Physical layer
    • Control channels
    • Protocols
    • Integration with LTE networks
    • Benchmarking with other IoT radios

Day 4 – 4G-5G Protocol Evolution (Neil Wiffen)

This course presents a technical description and comparison of key 4G and 5G protocols, including procedural overviews for various device and network activities.

Protocol structures and mechanisms that support communications across various interfaces are presented, including the Air Interface, 5GNR, NG-RAN, E-UTRAN and Core Network systems. Signalling principles and example signalling procedures are presented and Bearer / Connection setup mechanisms discussed. Protocol and Network architectures required to support several use-cases that have been introduced into the 5G specifications are also presented.


LTE / LTE-A Protocol Review

  • Air Interface Protocols
    • RRC
    • PDCP
    • RLC
    • MAC
    • PHY
  • RAN Protocols
    • X2AP
    • S1AP
    • GTP
  • 5G Architecture overview
    • Release status
    • NSA / SA principles
    • Deployment options Interworking
    • Service Provision evolution
    • Understanding QoS
    • Control and User Plane Separation
    • Centralised-RAN
  • 5G Core Network
    • Network Functions and Services
    • Service Based Architecture Principles
    • Interfaces and Protocols
    • Network Function Virtualization
    • Software Defined Mobile Networking
    • Mobile Edge Computing
    • Network Slicing
    • Session and Service Continuity
  • NG-RAN
    • NG-RAN Overview
    • Node B variants
    • Centralised and Distributed nodes
    • NG-RAN Interfaces
    • NG-RAN Protocols
    • o NGAP
    • o X2AP
    • o F1AP
  • NR Air Interface
    • RRC
    • SDAP
    • PDCP
    • RLC
    • MAC
    • PHY
  • 5G Protocol enhancements
    • PHY Layer Flexibility
    • Latency Reduction
    • Reliability Improvements
    • Bandwidth Management
  • 5G NAS
    • Registration Management
    • Connection Management
    • Session Management
    • Session and Service Continuity

Day 5 – 4G and 5G Design Challenges (Laurent Noël)

This session presents an overview of state of the art solutions and strategies used by chipset vendors to deliver cost efficient LTE-A Pro and 5G terminals/User Equipment (UE) with a focus on the RF subsystem and RF Front-End architectures.

Supporting the increasing number of bands and band combinations, maintaining radio performance, hardware cost and power consumption in multi-mode multi-standard smartphones poses serious design challenges. This course is a hands-on session looking at printed circuit boards (PCB), block diagrams and RF architecture solutions used by OEMs and chipset vendors to accommodate an ever increasing of frequency bands at near constant PCB area and BOM. Laboratory and field measurements are presented to compare 3GPP conformance tests vs real life operation and to illustrate end to end system performance for HSPA, LTE, LTE-A and VoLTE.

The content of this course is captured in the following book chapters:

  • LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, Wiley & Sons, chapter 11 “Performance Requirements”, April 2009
  • WCDMA for UMTS: HSPA Evolution and LTE, 5th Edition, Wiley & Sons, chapter 20, ” Terminal RF and Baseband Design Challenges”, August 2010
  • LTE for UMTS: Evolution to LTE-Advanced, 2nd Edition, Wiley & Sons, chapter 14, “Performance Requirements”, April 2011
  • HSPA+ Evolution to Release 12: Performance and Optimization, Wiley & Sons, chapter 14, “Multimode Multiband Terminal Design Challenges”, September 2014
  • LTE Small Cell Optimization: 3GPP Evolution to Release 13, Wiley & Sons, Chapter 16, “Smartphone Optimization”, January 2016


Smartphone market status and trends:

  • OEM market share and ranking
  • 3GPP LTE-A and 5G NR setting fast pace for the industry (explosion of frequency bands)
  • WW LTE-A and 5G Smartphone frequency bands and LTE-CA requirements.
  • OEMs strategy to address complexity: multiple variants vs single SKU in high end devices

Multi-mode, Multi-band RF transceiver architecture overview:

  • 2007-2017: From dual mode (2G-3G) to quad mode (2G,3G, LTE FDD, LTE TDD) devices: 10 years of evolution in RF transceivers
  • Zero-IF transceivers and challenges in removing external RF interstage filters

Overview of some RF Front-end challenges:

  • RF multiplexing complexity overview to address LTE single band, LTE-CA, and 4x4 MIMO operation for LTE-A Pro
  • Additional challenges coming with 5G <6GHz and 5G mmWave operation
  • Challenges in Multi-Mode Multi-Band Power Amplifier Front End Modules for LTE-A
  • RF filtering & internal smartphone coexistence issues: example of single-chip challenges
  • OTA performance & antenna challenges for 5G 4x4 MIMO operation

Addressing power consumption challenges:

  • Battery technology evolution
  • Challenges in measuring battery life in smartphones
  • Application engines evolution: example of the ARM big.LITTLE architecture
  • Power amplifier control schemes: from gain switching to envelope tracking
  • Impact of 5G waveforms on PA efficiency
  • Benefits of 3GPP cDRX on LTE  power consumption: data vs VoLTE
  • Benefits of small cell deployments on battery life


Participants who attend the full course will receive a University of Oxford certificate of attendance. This will be presented to you prior to the end of the course wherever possible.

The certificate will show your name, the course title and the dates of the course you attended.


Description Costs
Standard course fee £1995.00


Fees include course materials, tuition, refreshments and lunches. The price does not include accommodation.

All courses are VAT exempt.

Register immediately online 

Click the “book now” button on this webpage. Payment by credit or debit card is required.

Request an invoice

If you require an invoice for your company or personal records, please complete an online application form. The Course Administrator will then email you an invoice. Payment is accepted online, by credit/debit card, or by bank transfer. Please do not send card or bank details via email.


Dr Harri Holma


Fellow, Nokia Bell Labs, Finland

Harri Holma joined Nokia Research Centre in 1994 and received his M.Sc. 1995. He has been with Nokia since 1998 and has been located both in Finland and in USA during that time.

He is currently working with Nokia Bell Labs as Fellow with special interest on radio system performance. He completed his PhD at Helsinki University of Technology 2003.

Dr Holma has edited the books "WCDMA for UMTS", "HSDPA/HSUPA for UMTS", "LTE for UMTS", "LTE-Advanced", "Voice over LTE", “HSPA+ Evolution to Release 12” and “LTE Small Cell Optimization” and contributed to a number of other books in the radio communication area.

Dr Jonathan Moss


Telecoms Consultant

Jon is an experienced RF Design Engineer and Telecoms Trainer.

He worked previously for a mobile handset company, managing the development of Windows Mobile phones and introducing them to the Enterprise space and Mobile Network Operators. Prior to this, he was responsible for 3G Network performance optimisation for O2 Group where he held several roles in the UK, Ireland and the Isle of Man.

He received M.Eng. and D.Phil. qualifications from University College, Oxford in 1994 and 1998.

Mr Laurent Noël


Systems Senior Principal Engineer and 3GPP RAN4 delegate at Skyworks Solutions Inc. 


System Performance Analyst at Videotron, Canada, Mobile Devices Certification
Senior System Architect at ST-Ericsson, France. He worked on reconfigurable multi-mode, multi-standard, digital RF solutions for LTE, FDD-WCDMA, EGPRS, and TD-SCDMA projects.

Throughout 2007 and 2008 Laurent actively participated in the definition of the DigRF SM v4 standard within the MIPI alliance. Prior to that he worked at BT Laboratories (Martlesham Heath, UK) where he was involved in 3G testing activities and in research on high speed digital optical systems, including millimetre wave radio systems over fibre.

He received a degree in mathematics and physics from the University of Montpellier II, France, in 1991, and a degree as a microelectronics engineer at the "Institut des Sciences de l'Ingenieur" (ISIM), Montpellier, France, in 1994.

Mr Antti Toskala


Bell Labs Fellow,
Nokia Bell Labs,
Espoo, Finland

Antti Toskala (M.Sc) joined the Nokia Research Center in 1994, where he undertook WCDMA system studies, leading later WCDMA concept development in the ACTS FRAMES project. During 1997, he worked as a Senior Research Engineer and CDMA Specialist participating in the ETSI SMG2 UMTS standardization work.

He chaired the UMTS physical layer expert group in ETSI SMG2 during 1998, and from 1999 (the start of the 3GPP activity) until 2003 he worked in 3GPP as chairman of the TSG RAN WG1, the group responsible for the physical layer of the WCDMA standard. His group was responsible for the standardization of WCDMA physical layer, High Speed Downlink Packet Access (HSDPA) and for the start of uplink packet data evolution (HSUPA).

From 2003 to 2005 he worked as Senior Standardization Manager with System Technologies, at Nokia Networks and contributed to product development as the HSDPA Chief Architect for Nokia Networks.

From 2005 onwards he worked with Nokia Networks as Senior Standardization Manager focusing on HSPA and LTE standardization, and later as Head of Radio Standardization with  Nokia Siemens Networks  focusing on LTE and LTE-Advanced work in 3GPP.

He was nominated as Nokia Fellow in 2015 and Bell Labs Fellow in 2016.

Currently he is with Nokia Bell Labs, in Espoo, Finland, heading 3GPP RAN Standardization, with technical focus on 5G and 5G evolution.

He has co-authored 8 books in 3G, 4G and 5G (Including “WCDMA for UMTS”, “HSDPA/HSUPA for UMTS”, “LTE for UMTS” and “5G technology”). He regularly lectures on LTE/LTE-Advanced and 5G technologies in various universities and institutions around the world and has a large number of patents and publications in the field.

As part of the 2010 LTE World Summit LTE Awards, he received the “Award for Individual Contribution for LTE Development” recognizing his contribution to both LTE standardization and LTE knowledge spreading in the industry.

Mr Neil Wiffen


Senior Technical Instructor,
Red Banana Wireless Ltd

Since 2001 Neil has developed and delivered training for the majority of the major 3G handset and chipset manufacturers through EMEA, Asia-Pac and North America. Currently his training and consulting efforts are focussed on 3 key topic areas:

3G protocol stack (WCDMA, HSDPA,HSUPA)
Mobile Network Service Provision (Mobile Data Solutions, End-to-end Service Provision, Network Optimisation)
Government Research (Current and Emerging Wireless Systems)

Previously, Neil has worked as a Technical Instructor for Wray Castle Ltd., developing and delivering UMTS technical training material, and prior to this he spent 13 years with GCHQ on various Research and Development projects in both engineering roles and as a technical team leader.


If you would like to discuss your application or any part of the application process before applying, please click Contact Us at the top of this page.

Level and demands

RF and baseband engineers, radio planners, service developers, mobile operators, equipment designers and telecoms consultants.

In addition, the course will appeal to technical managers, analysts and strategists wishing to increase their technical understanding of the key subject areas currently in 4G and 5G telecoms.

If you're uncertain whether this course is suitable for your requirements, please email us with any questions you may have.


Although not included in the course fee, accommodation may be available at our on-site Rewley House Residential Centre. All bedrooms are en suite and decorated to a high standard, and come with tea- and coffee-making facilities, free Wi-Fi access and Freeview TV. Guests can take advantage of the excellent dining facilities and common room bar, where they may relax and network with others on the programme.

To check prices, availability and to book rooms please visit the Rewley House Residential Centre website.