Data Science for the Internet of Things (IoT)

Course summary

Data Science for the Internet of Things (IoT)



Overview

This unique course aims to create a new breed of engineer - those with a background in IoT and knowledge of machine learning, AI, cloud and robotics.

This Data Science for IoT course aims to equip you with the skills to solve problems, providing you with a toolkit (code) and templates. It's for developers who want to be data scientists with an emphasis on IoT.

The course explores problem solving for IoT analytics via the following topics:

  • Concepts: principles/foundations
  • Product development for IoT (with an emphasis on analytics)
  • Data science 
  • Artificial intelligence (AI)
  • TensorFlow and Keras
  • Deploying AI models to scale (e.g. via Kubernetes)
  • IoT Verticals 
  • Programming 
  • Statistics 
  • Time series 
  • Deep learning 
  • Real time including LSTMs and streaming
  • NoSQL databases for IoT
  • IoT data visualization 
  • Industrial IoT
  • Robotics and drones
  • Edge analytics
  • Complex event processing
  • Innovation in IoT
  • Methodology – putting it all together

About the course and its aims:

  • The course analyses problem solving for IoT analytics.
  • The unique considerations for IoT data (e.g. time series data) are investigated.
  • The course covers programming so participants will need to be familiar with some programming languages - but we do not expect familiarity in a specific language. The primary programming language of the course is Python (specifically TensorFlow and Keras).
  • We use Spark for big data.
  • The course needs an understanding of maths. We cover maths and statistics foundations  as needed.
  • Where possible, we use IoT datasets. We cover handling large-scale IoT datasets.
  • We focus on skills based/commercial products. This is not an academic course.
  • The course also includes an industry programme. The industry programme will be based on use cases incorporating IoT analytics methodology.
  • We aim to equip you with skills such as TensorFlow, Keras, Nvidia etc., which can be used outside of IoT applications.

The course takes a problem solving approach and uses specific case studies from industry. Participants are expected to have a mind-set of exploration and to study and learn beyond the class material itself (depending on their existing familiarity with the subject matter).

The course is based on a perspective of both AI and machine learning. AI is driven by deep learning algorithms. Deep learning is a wider case of machine learning based on automatic feature detection. IoT primarily involves data in time series formats (using AI algorithms like recurrent neural networks and long short-term memory (LSTMs)) and image-based data (using convolutional neural networks).

A limited number of participants ensures that all those taking this course gain the maximum possible value.

All participants finishing the Data Science for IoT course will receive a University of Oxford certificate showing that they have completed the course (see sample and details of requirements further down this page).

Time commitment for the course is 2 - 3 hours face-to-face in Oxford on Saturdays (usually starting at 10:30) and 1 - 2 hours online each week on Tuesdays (usually starting at 19:00). We recommend you allow around 10 - 12 hours study time per week (plus the hours above). There is a minimum attendance requirement of 75%.

You will be fully supported by the tutor who will be available during the week to answer questions.

The tutor will also offer a number of one-to-one 'surgery sessions' during the course.

All course participants will receive a Nvidia Jetson TX2 developer kit worth £441.00 (included in course fee).

All course participants will receive copies of these books (included in course fee):


Deep Learning with Python

Francois Chollet
(2017, Manning Publications)
 


Deep Learning with Python

Dr Jason Brownlee
(2016, Machine Learning Mastery)
 


Python Machine Learning

Sebastian Raschka
(2015, Packt Publishing)
 


Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis

Mohammed Guller
(2015, Apress)
 


Data Science for Internet of Things

Ajit Jaokar and Jean-Jacques Bernard
(forthcoming edition Nov 2017, Futuretext)
 

Mathematical Foundations for Data Science (awaiting confirmation of publication)
 

Travel to Oxford

The course will be held at our Rewley House site, which is a short walk from Oxford bus and train stations. Oxford is approximately 55 minutes by train from London Paddington and London Marylebone train stations. We are also about one hour from Birmingham. See the National Rail Enquiries website for train information.

Programme details

Week Zero: Onboarding platform, introductions etc.

Week One: Foundations of Data Science for IoT 

  • Explore the application of predictive learning algorithms to IoT datasets in detail.
  • Discuss the modalities where we could apply IoT analytics (Streaming, Edge etc.).
  • Understand data science for IoT from a problem solving perspective.
  • Understand IoT platforms and their strengths and drawbacks
  • Explore where analytics fits into the overall Product development for an IoT based application
  • IoT verticals

Week Two: Programming Foundations (part one) - The Python Ecosystem

In this session, we explore Python from a data science perspective using the book Python Machine Learning by Sebastian Raschka

Week Three: Programming Foundations (part two) - Understanding Tensorflow and Keras

Building on Week Two, we explore TensorFlow and Keras in detail using the books

Deep Learning with Python By Francois Chollet and Deep Learning with Python by Dr Jason Brownlee

Week Four: End to End IoT Deployment

This session covers an end to end IoT deployment covering sensors, analytics and visualization for beacons using Microsoft Azure.

Week Five:  Deploying Machine Learning and AI Models in Production

In this session, we explore the deployment of machine learning and AI models in production using two models: TensorFlow, Keras with Kubernetes and h2o.ai

Week Six: Time Series Analysis

Most IoT data is in time series format. In this session, we explore time series analysis including recurrent neural networks, LSTMs and multivariate time series.

Week Seven: Understanding and Managing Data and Models

Understanding and pre-processing data is a key part of data science. For IoT, we need two types of data, namely time series and image-based data. This session is based on understanding the transformations and models needed for IoT data with an emphasis on time series data and image based data.

Week Eight: Big Data and IoT - Spark Streaming and NoSQL Databases

In this session, we explore the impact of big data on data science for IoT. This includes perspectives like streaming (Spark) and NoSQL databases.

Book used for this section: Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis by Mohammed Guller.

Week Nine: Robotics, Drones etc. with Nvidia using AI and Deep Learning

With cameras as sensors, AI and deep learning technologies play a key role in a number of emerging areas. In this session, we use Nvidia platforms to understand the application of deep learning algorithms to a range of emerging technologies including drones, robotics etc. We primarily address video and image recognition based problems.

Week Ten: Industrial IoT

This session discusses various aspects of Industrial IoT including deployment of complex event processing, Industrial Internet of Things (IIoT) Platforms, platforms such as Predix, physics based modelling etc.  

Week Eleven:  Innovation / Latest Developments for Data Science for IoT

This session covers a range of innovations and latest developments with respect to data science for IoT including GPU databases, Voice interfaces for sensors, Blockchain, AI at chipset level, Tensorflow for embedded devices etc.

Week twelve: Industry Use Cases

Industry use cases and meeting with invited experts - spanning all the sections above, a discussion and collaboration with invited industry experts from Ocado, Barclays, Google, Microsoft, GSMA, Logtrust and others.

Note that tutors and content may be subject to minor revision during the course development process.

Certification

Participants who satisfy the course requirements will receive a Certificate of Attendance. The sample shown is an illustration only and the wording will reflect the course and dates attended.

To receive a certificate at the end of the course you will need to:

  1. Achieve a minimum attendance at the Oxford classroom sessions of 75%.
  2. Answer all the weekly learning quizzes (these are short quizzes designed to ensure you have understood the material in each unit).
  3. Complete the short exercises that you are given.

Fees

Instalments: Deposit £1,995 plus second payment of £2,100. Total: £4095.00
Standard course fee: £3995.00

Tutors

Ajit Jaokar

Lead Tutor and Course Developer

Author and Big Data/IoT/Telecoms Specialist

Ajit's work work spans research, entrepreneurship and academia relating to artificial intelligence (AI), the internet of things (IoT), predictive analytics and mobility.

Ajit works as a Data Scientist (fintech and IoT). He is also the Director of the newly founded AI/Deep Learning Labs for Future Cities at UPM (Universidad Politécnica de Madrid). Ajit is also currently the Research Data Scientist at a fintech firm in London.

Ajit publishes extensively on KDnuggets and Data Science Central and his book, Data Science for Internet of Things, is included as a course book at Stanford University.

He was recently included in top 16 influencers (Data Science Central), Top 100 blogs (KDnuggets), Top 50 (IoT central), No 19 among top 50 twitter IoT influencers (IoT Institute).

Ajit has been involved with various mobile, telecoms and IoT projects since 1999 including strategic analysis, development, research, consultancy and project management.

In 2009, he was nominated to the World Economic Forum’s ‘Future of the Internet’ council. In 2016 he was involved in a WEF council for systemic risk (IoT, drones etc.). He has worked with cities like Amsterdam and Liverpool on Smart City projects in mayoral level advisory roles. Ajit has been involved in IoT-based roles for the webinos project (Fp7 project). In May 2005 he founded the OpenGardens blog, which is widely respected in the industry. He has spoken at Mobile World Congress (4 times), CTIA, CEBIT, Web 2.0 expo, The European Parliament, Stanford University, MIT Sloan, Fraunhofer FOKUS; University of St Gallen. He has also been involved in transatlantic technology policy discussions.

Ajit is also passionate about teaching data science to young people through space exploration working with Ardusat.

Cezar Ionescu

Director of Studies

Associate Professor of Data Science, Department for Continuing Education, University of Oxford

Dr Cezar Ionescu is Associate Professor of Data Science at the Department for Continuing Education and Director of Studies in Computing and Mathematics.

His research interests include functional programming, dependently-typed programming, scientific computing, computing in schools, algorithmic thinking, synthetic populations.

Jean-Jacques Bernard

Guest Speaker

Director, Insight and Customer Strategy, Oracle 

JJ Bernard has an MSc in Engineering from the Ecole Centrale de Marseille and an MBA from the University of Cambridge. He is also a certified Lean Six Sigma Black Belt.

He currently works at Oracle as a strategy consultant, advising client on their technology investment with regards to their business strategy.

Previously, he has worked as a project manager for Orphoz, a subsidiary of McKinsey & Company, focusing on defining and executing transformation projects. He has worked in diverse environments such as manufacturing, FMCG, public sector, steelmaking, mining, healthcare and automative.

He has also worked for Accenture, both on business and IT transformation projects, for the financial services industry and the public sector. 

Joe Chow

Guest Speaker

Jo-fai (Joe) Chow, Data Scientist, H2O.ai

Before joining H2O, Joe was in the business intelligence team at Virgin Media in the UK where he developed data products to enable quick and smart business decisions.

He also worked remotely for Domino Data Lab in US as a data science evangelist promoting products via blogging and giving talks at meetups. Joe has a background in water engineering.

Before his data science journey, he was an EngD research engineer at STREAM Industrial Doctorate Centre working on machine learning techniques for drainage design optimisation.

Prior to that, he was an asset management consultant specialised in data mining and constrained optimisation for the utilities sector in the UK and abroad.

Joe also holds an MSc in Environmental Management and a BEng in Civil Engineering.

Paul Clarke

Guest Speaker

Chief Technology Officer, Ocado

Paul Clarke is Chief Technology Officer at Ocado, the world's largest online-only grocery retailer.Paul Clarke

Paul joined Ocado in 2006. After establishing new teams for Simulation and Mobile development, Paul then co-wrote the first of Ocado’s award winning mobile apps. In his current role, Paul heads up Ocado Technology, whose 950+ software engineers and other IT specialists are responsible for building all the software and IT infrastructure that powers Ocado, and now Morrisons’ online grocery business too.

Paul read Physics at St John's College, Oxford before then entering the computer industry.  He has worked in software engineering, consultancy, interim management and a number of software start-ups.

In what little spare time he has alongside his work and family, Paul loves to invent and build stuff, design PCBs, write software and generally tinker.

Peter Marriott

Guest Speaker

Director & Technical Consultant, Catalyst Computing Services

Peter Marriott is an industry practitioner with over 25 years database and software development experience on production systems. The main focus of his career has been working with data, working on business systems to make the data useful and available in a performant cost-effective way.

13 years ago he founded the consultancy Catalyst Computing Services, working with a wide range of clients in a variety of market sectors. Their first IoT project was in 2006. Peter has been involved working throughout the whole project development cycle of IoT: from prototyping proof of concepts; designing systems architecture; development; deployment and training of support staff.

Peter runs training courses in cloud computing and database technologies for clients, gives career talks for undergraduates and speaks at various IT user groups.

Application

How to apply for this course

Please complete this self-assessment pre-course questionnaire of your knowledge and experience before applying for the course.

Important: We do not expect you to have knowledge or experience in all of the areas on this questionnaire!

The information requested is to allow us to get a fuller picture of your skills and background.

Send us the following:

  1. a completed pre-course questionnaire
  2. an application form (you can send this later if you are not ready to formally apply for the course at this stage)

Payment

Send a completed application form to the course administrator by e-mail or post, and choose:

  • Request an invoice
  • BACS (bank transfer) payment
  • Online credit or debit card payment. We will send you a link to pay online after we receive your application form. Please do not send card details via email
  • Cheque payment (payable to OUDCE)

Fees

Standard course fee: £3995.00

Payment can be made in instalments: A deposit of £1,995.00 followed by a second final payment of £2,100.00 (only available to those registering before 1 October 2017) - £4,095.00

Fees include all course materials and tuition. The price does not include accommodation.

All courses are VAT exempt.