Tutor information

Sally Cowley

Head, James Martin Stem Cell Facility, University of Oxford

A graduate of Natural Sciences at Cambridge, Sally began her research career working on host-pathogen interactions (Ph.D 1990 University of London, and later at AHRI, Ethiopia). Her post-doctoral work (New England Deaconess Hospital, Harvard, Boston, and Institute of Cancer Research, London) centred around signal transduction pathways involved in differentiation: She identified and cloned a novel tyrosine kinase, MATK, implicated in megakaryocyte differentiation; and was the first to demonstrate that the protein kinase MEK (/MKK) is critical for signal transduction pathways leading to differentiation and to tumorigenic transformation.

Following a career break to raise children, she obtained a Wellcome Trust Career Re-entry fellowship and joined the Sir William Dunn School of Pathology in 2007, where, with Professor William James, she established and Heads the James Martin Stem Cell Facility (JMSCF). The Facility has expertise in human induced Pluripotent Stem (iPS) cell derivation, culture, genetic modification and differentiation. iPS cells derived from patients with genetic disease offers a new, hugely exciting opportunity to model human diseases ‘in a dish’. The lab has pioneered methods for differentiation of iPSC to macrophages for modelling innate immunity and infection pathways, thereby overcoming the limitations of blood-derived macrophages. The JMSCF has generated a world-class panel of iPS cells from Parkinson’s patients as part of a large scale Oxford Parkinson’s Disease Centre research programme funded by Parkinson’s UK (in collaboration with Professor Richard Wade-Martins). Sally has been a key member of StemBANCC, leading the development of iPSC gene-editing technologies in this EU-wide collaborative programme focussed on developing iPSc disease models as drug-screening platforms. She is also a Co-Investigator in the MRC DPUK Experimental Medicine Dementia Stem Cell Network, using iPSC-microglia to study neuroinflammation in neurodegenerative disease.